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1. Introduction
The optimal deployment of lunar ISRU plants is
crucial to realize an efficient lunar ISRU. Identifying
the best strategy for deployment is, however,
challenging due to significant uncertainties in the
lunar environment and ISRU operations.

Uncertainty examples related to lunar ISRU:
• Liquid OXygen (LOX) demand,
• Lunar regolith content,
• Sunlight availability.

Decision-making without considering LOX demand
uncertainty can lead to a risk of insufficient or
unnecessarily excessive production capacity.
Unfortunately, precise LOX demand prediction
remains impossible due to a lack of past data. To
address this uncertainty, this research proposes
using model predictive control (MPC) to optimize
lunar ISRU deployment strategies.

2. Model Predictive Control

Figure 1: MPC scheme. at time k MPC optimizes a series of control for futureN steps and implement the first one.

MPC is a control scheme used in process
industries (e.g., chemical plants). MPC optimizes a
series of controls (i.e., decisions) for a finite time
horizon (N steps). The first of the optimal control is
applied to the system, then MPCmeasures the
state and re-optimizes the control again.

3. Preliminary Case Study

Figure 2: Case study. Each time a decision maker decide how much we expand the production capacity and how much LOX we
directly bring to the Moon.

Problem Formulations
This case study demonstrates the use of
single-objective robust MPC to minimize the
landed mass under LOX demand uncertainty. A
state x and the control vector u at time t is
represented as:
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Then, the state transition can be expressed as
follows:
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where the demand is modeled as a first-order
autoregressive modelAR(1)with a parameter

φ = 1. The LOX boil-off rate and required LOXmass
for a lander’s one trip is expressed as α and β,
respectively.
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Figure 3: LOX demand scenarios tested in this case study. The time horizon is set to 20 years.

The optimization problem can be formulated as
follows: minimize

∑k+N−1
t=k


mreac 0 0

0 0 0

0 0 0

xt +

mreac +mISRU 0 0

1 mtank 0

0 0 0

ut

 (4)

subject to

Eq. 3,[
γ ζ −c

]
ut ≤ 0, (5)
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Inequality 5 expresses rocket launch capacity.

Results
Using the robust MPC approach [1], the MPC
problem above can be solved. We further
compared the result with a simple decision rule
approach. The decision rule used here states: “If
the LOX stock s is smaller than 5t for two
consecutive years, then expand the production
capacity by 10 t.” Figure 4 illustrates that the
robust MPC approach reduces the expected
landed mass by 5 t. Figure 5 shows that the
expected failure (time periods when s = 0) rate is
reduced approximately by 10 %.
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Figure 4: Cumulative probabilities of total landed mass for
eachmethod. MPC can deploy ISRUplants slightly better in
terms of landedmass, while the decision rule approach can
lead to smaller landed mass in some cases.
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Figure 5: Cumulative probabilities of failure rate. The fail-
ure rate is definedas the ratio of timeperiods that LOXstock
s = 0 to the studied time horizon.

4. Future Work and Summary
As Ikeya et al., [2] suggested, considering multiple
objectives is crucial in ISRU deployment. Future
research should focus on expanding to
Multi-objective Model Predictive Control (MOMPC).
Additionally, exploring other MPCmethods, such
as distributionally robust MPC, could provide
valuable insights.

Summary:
• MPC is used to optimize lunar ISRU deployment
under uncertainty,

• The result shows its better performance com-
pared to the decision rule approach,

• Expansion to MOMPC should be studied.
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