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Introduction: The optimal deployment of lunar in-

situ resource utilization (ISRU) plants is crucial to suc-

cessfully realize an efficient and reasonable lunar ISRU 

and ultimately establish a self-sustained human pres-

ence on and around the Moon. Identifying the best de-

ployment strategy is, however, challenging due to large 

uncertainty related to the lunar environment as well as 

the ISRU operation. Among many uncertain factors, the 

demand for Liquid OXygen (LOX) is one of the most 

critical yet unpredictable parameters. Past studies opti-

mized the lunar ISRU deployment under uncertainty 

[1], but they have often overlooked LOX demand. De-

cision-making without considering this uncertainty can 

lead to a risk of insufficient or unnecessarily excessive 

production capacity. Unfortunately, predicting LOX de-

mand in the future is, if not impossible, challenging due 

to a lack of past data. To deal with this extreme uncer-

tainty, this research proposes using model predictive 

control (MPC) to solve a sequential decision problem. 

MPC generates the best decisions adapting to (poten-

tially) fluctuating LOX demand. The optimal decisions 

are made under 1000 different demand realizations, and 

compared against a rather traditional decision rule ap-

proach. 

Methodology: Figure 1 depicts the methodology 

employed in this paper based on Multi-Objective MPC 

(MOMPC). At each time instant, MPC optimizes a se-

ries of controls (or decisions) for a finite future time 

horizon (𝑁  steps in this paper) based on the current 

state. Since this is a multi-objective approach, a Pareto 

optimal set can be generated. A decision maker can se-

lect a series of decisions to be implemented from the 

Pareto set following the criteria at that time. Once the 

first decision is implemented, the system observes an 

actual realization of an uncertain future. The optimiza-

tion process is then repeated using the updated state. 

As a preliminary study, this project uses a single-ob-

jective non-conservative robust MPC technique pro-

posed by Lucia et al.[2] An extension into a multi-ob-

jective problem could be done using a weight matrix [3]. 

For a linear system, this method solves the following 

optimization at a time 𝑡 = 𝑘: 

min
𝑼𝑘

𝐽(𝑥𝑘 , 𝑼𝑘) (1) 

subject to: 

 
Figure 1 –Proposed methodology using multi-objective MPC 

for sequential decision making. 

 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐷𝑤𝑘 (2a) 

𝑼𝑘 = [𝑢𝑘 , 𝑢𝑘+1, ⋯ , 𝑢𝑘+𝑁−1] (2b) 

𝑥𝑘 ∈ 𝒳 ∀𝑘 (2c) 

𝑢𝑘 ∈ 𝒰 ∀𝑘, (2d) 

where 𝑥𝑘, 𝑢𝑘, 𝑤𝑘 represent the state, control, and uncer-

tain disturbance vectors at 𝑡 = 𝑘, respectively. The state 

and input constraints are expressed in (2c) and (2d). 

Case Study:   

Overview and Assumptions. We use the proposed 

method for a simple case study. In this preliminary case 

study, the deployment of lunar ISRU carbothermal re-

duction (CR) plants under LOX uncertainty is consid-

ered.  

It is assumed that each capacity expansion is done 

by deploying an additional system with all necessary 

components from regolith excavation to liquefaction, 

instead of adding additional components such as reac-

tors.  

System. The state, control and uncertain disturbance 

of this case study are represented as 𝑥𝑡 =
[𝑐𝑡 𝑠𝑡 𝑑𝑡]𝑇 , 𝑢𝑡 = [Δ𝑐𝑡 𝑎𝑡]𝑇 , and 𝑊𝑡 = 𝛿𝑑𝑡  , re-

spectively. The elements in the state vector 𝑐, 𝑠, 𝑑 rep-

resent the LOX production capacity, LOX stock on the 
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Moon, and the demand for the LOX. The additional ca-

pacity to be installed on the Moon is denoted by 𝛥𝑐, 

while 𝑎 represents the mass of the additional LOX di-

rectly imported from Earth. Furthermore, the change in 

the demand is denoted by 𝛿𝑑. 

A simple lunar ISRU deployment problem can be 

represented as follows: 

[
𝑐
𝑠
𝑑

]

𝑡+1

= [
1 0 0
1 1 −1
0 0 1

] [
𝑐
𝑠
𝑑

]

𝑡

+ [
1 0
1
0

1
0

] [
𝛥𝑐
𝑎

]
𝑡

+ [
0

−1
1

] 𝛿𝑑𝑡 . 

(3) 

As a preliminary case study, the objective is set to 

minimize the landed mass, which can be expressed as 

follows: 

𝐽 = ∑ (𝑀𝐼𝛿𝑐𝑡 + 𝑎𝑡 + 𝑀𝑟(𝑐𝑡 + 𝛿𝑐𝑡))
𝑡∈𝒯

. (3) 

Based on [4], the landed mass of a CR ISRU plant has 

an almost linear dependency on the capacity, and 𝑀𝐼𝛿𝑐𝑡  

represents the mass of the system deployed at that time. 

The CR architecture also requires additional reactants to 

compensate for imperfect reactant recycling. This mass 

depends on the total capacity, and thus, is represented 

by 𝑀𝑟(𝑐𝑡 + 𝛿𝑐𝑡). 

The LOX demand is modeled as a random walk. The 

change in the demand from the last year is assumed to 

be ± 5 t with a uniform distribution with an initial de-

mand of 10 t. Figure 2 shows 1000 different scenarios 

of the LOX considered in this case study. 

 

 
Figure 2 –1000 realizations of LOX annual demand proper-

ties in 30 years. 

 

Preliminary results. Figures 3 and 4 compare the 

performance of the proposed MPC-based approach with 

a more conventional decision rule approach. The em-

ployed decision rule is “IF the LOX stock is lower than 

a threshold value of 2 t for two consecutive years, 

THEN expand the production capacity by 10 t. 

OTHERWISE do nothing.”  As can be seen in Fig. 4, 

the expected landed mass following the proposed 

method is smaller than following the decision rule. The 

proposed method, however, generated a larger landed 

mass at the 95th percentile, indicating less favorable for 

risk-averse decision-makers. 

 

 
Figure 3 – Histograms of total landed mass using the deci-

sion-rule approach and MPC. 

 

 
Figure 4 – Cumurative probabilities of total landed mass us-

ing the decision-rule approach and MPC. 

 

Conclusion: This paper has proposed a new MPC-

based method to assist decision-makers in making deci-

sions under uncertainty. The simple case study shows 

its potential. To incorporate deep uncertainty consider-

ation, a more sophisticated MPC method such as a dis-

tributionally robust MPC should be explored in the fu-

ture. 
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