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Introduction: The optimal deployment of lunar in-
situ resource utilization (ISRU) plants is crucial to suc-
cessfully realize an efficient and reasonable lunar ISRU
and ultimately establish a self-sustained human pres-
ence on and around the Moon. Identifying the best de-
ployment strategy is, however, challenging due to large
uncertainty related to the lunar environment as well as
the ISRU operation. Among many uncertain factors, the
demand for Liquid OXygen (LOX) is one of the most
critical yet unpredictable parameters. Past studies opti-
mized the lunar ISRU deployment under uncertainty
[1], but they have often overlooked LOX demand. De-
cision-making without considering this uncertainty can
lead to a risk of insufficient or unnecessarily excessive
production capacity. Unfortunately, predicting LOX de-
mand in the future is, if not impossible, challenging due
to a lack of past data. To deal with this extreme uncer-
tainty, this research proposes using model predictive
control (MPC) to solve a sequential decision problem.
MPC generates the best decisions adapting to (poten-
tially) fluctuating LOX demand. The optimal decisions
are made under 1000 different demand realizations, and
compared against a rather traditional decision rule ap-
proach.

Methodology: Figure 1 depicts the methodology
employed in this paper based on Multi-Objective MPC
(MOMPC). At each time instant, MPC optimizes a se-
ries of controls (or decisions) for a finite future time
horizon (N steps in this paper) based on the current
state. Since this is a multi-objective approach, a Pareto
optimal set can be generated. A decision maker can se-
lect a series of decisions to be implemented from the
Pareto set following the criteria at that time. Once the
first decision is implemented, the system observes an
actual realization of an uncertain future. The optimiza-
tion process is then repeated using the updated state.

As a preliminary study, this project uses a single-ob-
jective non-conservative robust MPC technique pro-
posed by Lucia et al.[2] An extension into a multi-ob-
jective problem could be done using a weight matrix [3].

For a linear system, this method solves the following
optimization at a time t = k:

min] Cxi, Uy) (1)
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Figure 1 —Proposed methodology using multi-objective MPC
for sequential decision making.
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where x,, u,, w, represent the state, control, and uncer-
tain disturbance vectors at t = k, respectively. The state
and input constraints are expressed in (2¢) and (2d).

Case Study:

Overview and Assumptions. We use the proposed
method for a simple case study. In this preliminary case
study, the deployment of lunar ISRU carbothermal re-
duction (CR) plants under LOX uncertainty is consid-
ered.

It is assumed that each capacity expansion is done
by deploying an additional system with all necessary
components from regolith excavation to liquefaction,
instead of adding additional components such as reac-
tors.

System. The state, control and uncertain disturbance
of this case study are represented as x, =
[c: s¢ de]T, u, =[Ac; a7, and W, = &d, , re-
spectively. The elements in the state vector c, s, d rep-
resent the LOX production capacity, LOX stock on the
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Moon, and the demand for the LOX. The additional ca-
pacity to be installed on the Moon is denoted by Ac,
while a represents the mass of the additional LOX di-
rectly imported from Earth. Furthermore, the change in
the demand is denoted by §d.

A simple lunar ISRU deployment problem can be
represented as follows:
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As a preliminary case study, the objective is set to
minimize the landed mass, which can be expressed as
follows:

= ZtET(M’SCt +a, + M (c, + 8¢cy)). ®)

Based on [4], the landed mass of a CR ISRU plant has
an almost linear dependency on the capacity, and M'&¢,
represents the mass of the system deployed at that time.
The CR architecture also requires additional reactants to
compensate for imperfect reactant recycling. This mass
depends on the total capacity, and thus, is represented
by M"(c, + &c,).

The LOX demand is modeled as arandom walk. The
change in the demand from the last year is assumed to
be + 5 t with a uniform distribution with an initial de-
mand of 10 t. Figure 2 shows 1000 different scenarios
of the LOX considered in this case study.
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Figure 2 —1000 realizations of LOX annual demand proper-
ties in 30 years.

Preliminary results. Figures 3 and 4 compare the
performance of the proposed MPC-based approach with
a more conventional decision rule approach. The em-
ployed decision rule is “IF the LOX stock is lower than
a threshold value of 2 t for two consecutive years,
THEN expand the production capacity by 10 t.

OTHERWISE do nothing.” As can be seen in Fig. 4,
the expected landed mass following the proposed
method is smaller than following the decision rule. The
proposed method, however, generated a larger landed
mass at the 95" percentile, indicating less favorable for
risk-averse decision-makers.
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Figure 3 — Histograms of total landed mass using the deci-
sion-rule approach and MPC.

=
o

[ Decrule

MPC
4 —=- Dec. rule mean
=== MPC rule mean

= o
= @

1
S

Probability of occurrence

S
N}

0.0 T T T
80 100 120
Total landed mass [t]

Figure 4 — Cumurative probabilities of total landed mass us-
ing the decision-rule approach and MPC.
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Conclusion: This paper has proposed a new MPC-
based method to assist decision-makers in making deci-
sions under uncertainty. The simple case study shows
its potential. To incorporate deep uncertainty consider-
ation, a more sophisticated MPC method such as a dis-
tributionally robust MPC should be explored in the fu-
ture.
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